Piecewise Linear Dynamic Programming for Constrained POMDPs

نویسندگان

  • Joshua D. Isom
  • Sean P. Meyn
  • Richard D. Braatz
چکیده

We describe an exact dynamic programming update for constrained partially observable Markov decision processes (CPOMDPs). State-of-the-art exact solution of unconstrained POMDPs relies on implicit enumeration of the vectors in the piecewise linear value function, and pruning operations to obtain a minimal representation of the updated value function. In dynamic programming for CPOMDPs, each vector takes two valuations, one with respect to the objective function and another with respect to the constraint function. The dynamic programming update consists of finding, for each belief state, the vector that has the best objective function valuation while still satisfying the constraint function. Whereas the pruning operation in an unconstrained POMDP requires solution of a linear program, the pruning operation for CPOMDPs requires solution of a mixed integer linear program.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eecient Dynamic-programming Updates in Partially Observable Markov Decision Processes

We examine the problem of performing exact dynamic-programming updates in partially observable Markov decision processes (pomdps) from a computational complexity viewpoint. Dynamic-programming updates are a crucial operation in a wide range of pomdp solution methods and we nd that it is intractable to perform these updates on piecewise-linear convex value functions for general pomdps. We offer ...

متن کامل

Dynamic Programming for Structured Continuous Markov Decision Problems

We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, us...

متن کامل

Point-Based Value Iteration for Constrained POMDPs

Constrained partially observable Markov decision processes (CPOMDPs) extend the standard POMDPs by allowing the specification of constraints on some aspects of the policy in addition to the optimality objective for the value function. CPOMDPs have many practical advantages over standard POMDPs since they naturally model problems involving limited resource or multiple objectives. In this paper, ...

متن کامل

Eecient Dynamic-programming Updates in Partially Observable Markov Decision Processes Eecient Dynamic-programming Updates in Partially Observable Markov Decision Processes

We examine the problem of performing exact dynamic-programming updates in partially observable Markov decision processes (pomdps) from a computational complexity viewpoint. Dynamic-programming updates are a crucial operation in a wide range of pomdp solution methods and we nd that it is intractable to perform these updates on piecewise-linear convex value functions for general pomdps. We offer ...

متن کامل

A Parallel Algorithm for POMDP Solution

Most exact algorithms for solving partially observable Markov decision processes (POMDPs) are based on a form of dynamic programming in which a piecewise-linear and convex representation of the value function is updated at every iteration to more accurately approximate the true value function. However, the process is computationally expensive, thus limiting the practical application of POMDPs i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008